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a b s t r a c t

Lithium ion battery electrode materials generally experience significant volume changes during charging
and discharging caused by concentration changes within the host particles. Electrode failure, in the form
of fracture or decrepitation, may occur as a result of a highly localized stress, strain energy, and stress
cycles over time. In this paper, we develop analytic expressions for the evolution of stress and strain energy
within a spherically shaped electrode element under either galvanostatic (constant current) or poten-
eywords:
tress
train energy
iffusion
alvanostatic
otentiostatic

tiostatic (constant potential) operation when irreversible phenomena are dominated by solute diffusion
resistance within host particles. We show that stresses and strain energy can evolve quite differently
under potentiostatic vs. galvanostatic control. The findings of this work suggest the possibility of devel-
oping new battery charging strategies that minimize stress and strain energy and thus prolong battery
life.

© 2009 Elsevier B.V. All rights reserved.

attery

. Introduction

Diffusion-induced stress (DIS) can occur as a result of com-
ositional inhomogeneities during solid-state diffusion in many
echnological situations, including dopant diffusion in semicon-
uctor processing, oxidation of metals, hydrogen transport in
olid-state hydrogen-storage media, and lithium diffusion in bat-
ery electrodes. Several authors have developed models for DIS.
or example, Prussin [1] made an analogy between thermal stress
nd DIS and analyzed the transverse stresses developed in a thin
late during mass transfer. Li [2] provided a number of analyt-

cal solutions to DIS problems in spherical, cylindrical, and thin
late geometry. Lee and co-workers [3–5] have also studied DIS in
arious systems including thin plates, hollow cylinders, and com-
osites. Yang and Li [6,7] considered the effect of diffusion-induced
tresses on the bending of beam and plate structures for sensing
pplications. Yang also studied the coupled problem of interactions
f stress and diffusion [7].
Within the electrochemical energy storage topical area, a num-
er of publications address the modeling of lithium ion batteries
8–15] and are focused on the underlying thermodynamics, interfa-
ial kinetics, and transport phenomena governing electrochemical

∗ Corresponding author.
E-mail addresses: ycheng@engr.uky.edu (Y.-T. Cheng),

ark.w.verbrugge@gm.com (M.W. Verbrugge).

378-7753/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2009.01.021
systems in the context of a volume-averaged treatment of porous
media. Recently, García et al. [16], Christensen and Newman [17,18]
and Zhang et al. [19] studied stresses generated during Li diffusion
under galvanostatic control. The latter authors also investigated
linear sweep voltammetry of a single particle as well as heat gen-
eration [20]; their investigation included spherical and ellipsoidal
particles. The paper by Zhang et al. [21] is devoted to the analy-
sis of a single particle undergoing electrochemical insertion and
outlines the motivation for such single particle studies. The afore-
mentioned battery references and this work are motivated by the
need to develop high energy and power batteries that are durable
over the intended usage profiles [24].

Since batteries are usually charged using sophisticated meth-
ods that consist of both galvanostatic and potentiostatic control,
we report in this paper stress and strain energy evolution under
either purely galvanostatic or potentiostatic condition when the
resistance of the cell is governed by solute diffusion limitations
within the insertion particles. The analytic solutions developed in
this work should improve the current understanding of stress and
strain energy evaluation by (1) identifying dimensionless parame-
ters that control stress and strain energy evolution, (2) providing
the asymptotic behavior for short- and long-time limits, and (3)

rendering order of magnitude estimates for more complicated oper-
ating conditions. The results of this work may be used to develop
strategies that minimize stress-induced battery failures. Additional
information on relevant past works by the present authors can be
found in Refs. [22,23]; in these two investigations, surface tension

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:ycheng@engr.uky.edu
mailto:mark.w.verbrugge@gm.com
dx.doi.org/10.1016/j.jpowsour.2009.01.021
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Nomenclature

List of symbols
as specific surface (e.g., cm2 cm−3)
C molar concentration
C0 initial (uniform) solute concentration
CR surface concentration during constant potential

operation
Cav(r) average concentration in the spherical volume of

radius r
Cav(R) average concentration in the spherical particle of

radius R
D diffusion coefficient of the solute
E Young’s modulus
ET total elastic energy stored in the sphere of radius R
e strain energy density
e− electron
F Faraday’s constant
H+ proton
I current over a spherical particle of radius R
Icell cell current
i0,ref exchange current based on reference concentration
L electrode thickness
Li+ lithium ion
r, �, � spherical coordinates
R radius of spherical particle
S vacant site in host materials
u radial displacement
x dimensionless radial position

Greek symbols
εr radial strain
ε� tangential strain
�1 volume fraction of active material in porous elec-

trode
�r radial stress
�� tangential stress
� mean stress
�r,max maximum radial stress
��,max maximum tangential stress
�shear,max maximum shear stress
� Poisson’s ratio
˝ partial molar volume of the solute
�V

r dimensionless stress in the radial direction for
potentiostatic operation

�V
�

dimensionless stress in the tangential direction for
potentiostatic operation

�I
r dimensionless stress in the radial direction for gal-

vanostatic operation
�I

�
dimensionless stress in the tangential direction for
galvanostatic operation

� dimensionless time∏
V dimensionless total elastic energy in the sphere for

potentiostatic operation∏
I dimensionless total elastic energy in the sphere for

a
d
p
s
f
g

galvanostatic operation

nd surface modulus were shown to play a significant role in the

etermination of the stress amplitude and distribution for small
articles. For the purposes of this work, we shall not include the
urface phenomena, allowing us to streamline the exposition and
ocus on the distinguishing differences between potentiostatic and
alvanostatic operation.
ower Sources 190 (2009) 453–460

2. Analysis and results

2.1. Mechanics of composition induced stresses

We consider stress caused by diffusion within a spherical parti-
cle of radius R. The bulk of the spherical particle is assumed to be
an isotropic linear elastic solid. Using the analogy between ther-
mal and DIS [1–7,17–20,22,23,25], the stress–stain relationships,
expressed in the spherical coordinate system, for the radial and
tangential components, are

εr = 1
E

(�r − 2���) + 1
3

˝C, ε� = 1
E

[(1 − �)�� − ��r] + 1
3

˝C,

(1)

where E is Young’s modulus, � is Poisson’s ratio, C is molar con-
centration, and ˝ is the partial molar volume of the solute. We
further assume that the elastic properties are independent of the
concentration C.

Because of spherical symmetry, the radial and tangential strains,
in the infinitesimal formulation of deformation, are given by
εr = du/dr and ε� = u/r, where u is the radial displacement. Since
atomic diffusion in solids is a much slower process than elastic
deformation, mechanical equilibrium is established much faster
than that of diffusion. Mechanical equilibrium is, therefore, treated
as a static equilibrium problem. In the absence of any body-force,
the equation for static mechanical equilibrium in the bulk of a
sphere is given by Ref. [25]:

d�r

dr
+ 2

�r − ��

r
= 0. (2)

The solutions for the normal and tangential stresses that satisfy the
boundary condition �r(R) = 0 and remain finite at r = 0 are given by:

�r(r) = 2E˝

9(1 − �)
[Cav(R) − Cav(r)],

��(r) = E˝

9(1 − �)
[2Cav(R) + Cav(r) − 3C(r)], (3)

where Cav(r) ≡ (3/r3)
∫ r

0
r2C(r) dr is the average concentration in

the spherical volume of radius r within the particle of radius R. Since
lim
r→0

Cav(r) = C(0), Eq. (3) shows that the stress-state at the center of

the sphere is purely hydrostatic, i.e., lim
r→0

�r(r) = lim
r→0

��(r), which is

true for any physically admissible concentration profile.
Recognizing that ��(r) = ��(r), we can write the “mean” stress as

�(r) = �r(r) + 2��(r)
3

= 2E˝

9(1 − �)
[Cav(R) − C(r)]. (4)

Because of the spherical symmetry, one principal shear stress is
zero and the other two are both equal to (�r − ��)/2. Eq. (3) shows
that the principal shear stress is

�r(r) − ��(r)
2

= E˝

6(1 − �)
[C(r) − Cav(r)]. (5)

Hence, the stresses at any given location and time can be obtained
once composition profile is known.

From the stresses, we can calculate the strain energy per unit
volume or strain energy density e(r) accumulated as a result of the
elastic deformation for the isotropically deformed sphere [25]:

�2(r) + 2�2(r) − 2�� (r) [2�r(r) + � (r)]

e(r) = r � � �

2E
. (6)

The total elastic energy stored in the sphere, ET, which provides
the driving force for fracture, can then be obtained by integrating
the strain energy density over the entire volume of the spherical
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article:

T = 4	

∫ R

0

e(r)r2 dr. (7)

.2. Diffusion-induced stresses under constant voltage and
urrent conditions

We consider reactions of the type

i+ + e− + S = [Li–S] and H+ + e− + S = [H–S],

eflecting the insertion and extraction of lithium ions (as in lithium
on cells) or protons (as in nickel metal hydride cells), respectively,
wo cases of immediate interest for battery systems. A vacant site
ith the host materials is represented by S and e− refers to the elec-

ron. The number of electrons taking place in the electrochemical
eaction and the stoichiometric coefficient of the reacting species
re taken to be unity, consistent with the stated elementary reac-
ions. When the current is controlled and the electrode resistance
s governed by diffusion limitations within the insertion particles,
he cell current Icell is related to the current over a spherical particle
y I = Icell/(asL), where the specific surface as (commonly expressed
n units of cm2 cm−3) is given by 3�1/R [26], with �1 representing
he volume fraction of the active material in the porous electrode
nd L being the porous electrode thickness. We shall assume the
urrent density is uniform over the particle surface and we shall
ot account for changes in surface area of the particle during inser-
ion and extraction in terms of impacting the current density [18],
onsistent with the infinitesimal formulation of deformation. When
he electrode voltage is controlled relative to a reference electrode
nd, again, particle resistance dominates, the electrode voltage sets
he solute surface concentration if the magnitude of the dimension-
ess group i0,refR/[FD(CR − C0)] is large, as this group characterizes
olute diffusion resistance within the host particle to that of the
lectrochemical reaction resistance over the particle surface [26].
n this relation, C0 is the initial (uniform) solute concentration, CR is
he surface concentration during the constant potential operation,

refers to the diffusion coefficient of the solute, and F is Faraday’s
onstant. The exchange current, which houses the interfacial rate
onstants, is rendered as i0,ref, where the subscript “ref” indicates
hat it is based on reference concentrations. General texts can be

onsulted for a description of the interfacial charge-transfer the-
ry [27,28]. To summarize, when solute-diffusion control prevails
nd the electrode is subjected to galvanostatic (controlled current)
peration, the current density over the particle surface I = FD(dC/dr)
s fixed. Similarly, when solute-diffusion control prevails and the
lectrode is subjected to potentiostatic (controlled potential) oper-
tion and the dimensionless group i0,refR/[FD(CR − C0)] is large (e.g.,
or facile interfacial reactions, electrodes constructed with large
articles, a low solid-phase lithium diffusion coefficient, or for
ny combinations of these situations), the surface concentration
s a constant and can be determined from an equilibrium poten-
ial relation. A specific treatment of equilibrium relations based

�r

[E˝(CR − C0)/(3(1 − �))]
= −4

∞∑
n=1

e−n2	2�

(
1

(n	)2
+ (−1)n

��

[E˝(CR − C0)/(3(1 − �))]
= −2

∞∑
n=1

e−n2	2�

(
2

(n	)2
+ (−1)n

n	x
n molecular thermodynamics for intercalation electrodes can be
ound in Refs. [29–31].

To illustrate the differences in stress evolution under galvano-
tatic and potentiostatic control, we consider a simple problem of
iffusion within a sphere of radius R with a constant diffusion coef-
ower Sources 190 (2009) 453–460 455

ficient. The relevant diffusion equation in the spherical coordinate
system is given by Ref. [32]:

∂C

∂t
= D

r2

∂

∂r

(
r2 ∂C

∂r

)
, (8)

The initial and boundary conditions corresponding to potentiostatic
control are given by:

C(r, 0) = C0, for 0 ≤ r ≤ R
C(R, t) = CR, for t ≥ 0
C(0, t) = finite, for t ≥ 0

. (9)

The initial and boundary conditions corresponding to galvanostatic
control are given by:

C(r, 0) = C0, for 0 ≤ r ≤ R

D
∂C(r, t)

∂r

∣∣∣∣
r=R

= I

F
, for t ≥ 0

D
∂C(r, t)

∂r

∣∣∣∣
r=R

= 0, for t ≥ 0

. (10)

2.2.1. Potentiostatic (constant voltage and surface concentration)
operation

The analytic solution of the diffusion equation (Eq. (8)) with ini-
tial and boundary conditions for the potentiostatic control (Eq. (9))
is [32]:

C(r, t) − C0

CR − C0
= 1 + 2

∞∑
n=1

(−1)n

n	x
sin(n	x)e−n2	2�, (11)

where x = r/R and � = Dt/R2.
The average concentrations Cav(r) and Cav(R) are then given by

Cav(r) − C0

CR − C0
= 1 + 6

x3

∞∑
n=1

(−1)n

n3	3
[sin(n	x) − (n	x)cos(n	x)]e−n2	2�

and
Cav(R) − C0

CR − C0
= 1 − 6

∞∑
n=1

1
n2	2

e−n2	2� . (12)

Eq. (12) can be substituted into Eq. (3) to obtain the solutions for
stresses under potentiostatic control:

in(n	x) − n	x cos(n	x)

(n	x)3

))
≡ �V

r (x, �)

n	x) − (−1)n

(
sin(n	x) − n	x cos(n	x)

(n	x)3

))
≡ �V

� (x, �)

(13)

where �V
r (x, �) and �V

�
(x, �) are the respective dimensionless

stresses in the radial and tangential directions for potentiostatic
operation.

The mean and shear stresses are then given by

(�r + 2��)/3
[E˝(CR − C0)/(3(1 − �))]

= −4
∞∑

n=1

e−n2	2�

(
1

(n	)2
+ (−1)n

3n	x
sin(n	x)

)
(14)

and
�r − ��
[2E˝(CR − C0)/(3(1 − �))]

=
∞∑

n=1

(−1)n

n	x
e−n2	2�

(
sin(n	x) − 3

(
sin(n	x) − n	x cos(n	x)

(n	x)2

))
,

(15)
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ig. 1. Concentration profile (a) and the corresponding radial (b), tangential (c), an
olution concentration increases with time (a), and the magnitudes of the tangentia
and 1/2, respectively, (cf. Eq. (3)) throughout the insertion process.

espectively. Fig. 1 shows the concentration, radial, tangential, and
hear stresses, normalized by E˝(CR − C0)/(3(1 − �)), as a function
f position and time. Two cases of special interest are (1) “insertion”
ith initial condition C0 = 0 and a finite CR and (2) “extraction” with
finite C0 and CR = 0. For insertion, the radial stress is tensile in the

phere. At any given time, the tensile radial stress is the highest
t the center and decreases monotonically to zero at the surface
Fig. 1b). It can be shown [25] that when the dimensionless time
= Dt/R2 = 0.0574, which is just after the solute reaches the center
f the sphere, the radial stress at the center attains the maximum:

r,max ≈ 0.4
E˝(CR − C0)

3(1 − �)
. (16)

he radial stress at the center then deceases with increasing time.
he tangential stress is compressive at the surface and tensile at
he center of the sphere (Fig. 1c). The tensile tangential stress at
he center appears before the solute reaches there. At the center,
he tangential and radial stresses always have the same magnitude
o that the stress at the center is purely hydrostatic in tension. The
aximum tangential stress, which is compressive, occurs at the

urface at time zero:
�,max = −E˝(CR − C0)
3(1 − �)

. (17)

nalogous conclusions hold for extraction if “tensile” is replaced
y “compressive”. The shear stress at the center of the sphere is
ar stress (d) for potentiostatic (constant solute surface concentration) control. The
hear stresses (c and d, respectively) at the particle surface decrease with time from

zero. For all times, the shear stress increases towards the surface.
The maximum shear stress, with its magnitude half of that of the
maximum tangential stress, occurs at surface at time zero (Fig. 1d):

�shear,max = E˝(CR − C0)
6(1 − �)

. (18)

Knowing the stresses, we can obtain the total elastic energy
stored in the sphere ET as a function of dimensionless time � using
Eqs. (6), (7) and (13):

ET (�)

2	R3E[˝(CR − C0)/(3(1 − �))]2

=
∫ 1

0

[
�V2

r (x, �)+2�V2

� (x, �)−2��V
� (x, �)(2�V

r (x, �)+�V
� (x, �))

]
x2 dx

≡ ˘V (�, �) (19)

where
∏

V is defined as the dimensionless total elastic energy in
the sphere for potentiostatic operation. Eq. (19) is shown in Fig. 2
for representative values of Poisson’s ratio (−1 < � < 0.5) for poten-
tiostatically controlled charging. In a uniaxial tensile-strain test,

the Poisson ratio � is the ratio of lateral to longitudinal strain. It is
dimensionless and typically ranges from 0.2 to 0.5. For incompress-
ible materials, � = 0.5, and the material’s volume remains constant
under deformation. When stretching a material under uniaxial ten-
sion causes no lateral contraction, � = 0. For any stable material,
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ig. 2. Total strain energy vs. time for potentiostatic charging. The strain energy
ncreases monotonically with decreasing Poisson ratios.

1 < � < 0.5. Poisson’s ratio affects the total stored energy signifi-
antly. The total strain energy first increases, reaches a maximum,
nd then decreases because of the transient nature of the stresses
Fig. 1b–d).

.2.2. Galvanostatic (constant current and surface flux) operation
The analytic solution of the diffusion equation (Eq. (8)) with

he initial and boundary conditions (Eq. (10)) for the galvanostatic
ondition is also well known [32]1:

(r, t)

= C0 + IR

FD

[
3� + 1

2
x2 − 3

10
− 2

x

∞∑
n=1

(
sin(�nx)

�2
n sin(�n)

exp(−�2
n�)

)]
,

(20)

here �n (n = 1, 2, 3, . . .) are the positive roots of tan(�n) = �n.
Using Eq. (20), we can express the average concentrations as

Cav(r, t) = C0 + 3
(

IR

FD

)[
� + 1

10
(x2 − 1)

− 2
x3

∞∑
n=1

(
sin(�nx) − (�nx)cos(�nx)

�4
n sin(�n)

exp(−�2
n�)

)]
,

av(R, t) = C0 + 3
(

IR

FD

)
� = C0 + 3

I

FR
t. (21)

Eq. (21) can be substituted into Eq. (3) to obtain the solutions for
tresses:

�r

[(E˝/(3(1 − �)))(IR/(FD))]

1 4
∞∑(

sin(�nx) − (�nx)cos(�nx)
)

=
5

(1 − x2) +
x3

n=1
�4

n sin(�n)
exp(−�2

n�)

≡ �I
r(x, �),

1 The concentration C(r, t) cannot exceed the concentration of available sites for
he solute in the case of insertion electrodes, and this will place a limit on the
dmissible value of the product It.
ower Sources 190 (2009) 453–460 457

��

[(E˝/(3(1 − �)))(IR/(FD))]

= 1
5

(1 − 2x2) + 2
∞∑

n=1

exp(−�2
n�)

�n sin(�n)

×
(

sin(�nx)
�nx

− sin(�nx) − (�nx)cos(�nx)

�3
nx3

)
≡ �I

�(x, �). (22)

where �I
r(x, �) and �I

�
(x, �) are the respective dimensionless stress

in the radial and tangential directions for galvanostatic operation.
The mean and shear stresses are then given by

(�r + 2��)/3
[(E˝/(3(1 − �)))(IR/(FD))]

= 1
5

(1 − 2x2) + 4
3x

∞∑
n=1

(
sin(�nx)

�2
n sin(�n)

exp(−�2
n�)

)
(23)

and
�r − ��

[(2E˝/(3(1 − �)))(IR/(FD))]

= x2

10
+ 3

x3

∞∑
n=1

(
sin(�nx) − (�nx)cos(�nx)

�4
n sin(�n)

exp(−�2
n�)

)

−1
x

∞∑
n=1

(
sin(�nx)

�2
n sin(�n)

exp(−�2
n�)

)
, (24)

respectively.
Fig. 3 shows the concentration, radial, and tangential stresses,

normalized by E˝IR/(3(1 − �)FD), as a function of position and time
and using the sign convention defined in Eq. (10) for the current;
i.e., insertion and extraction correspond to a positive and negative
current, respectively. From a qualitative perspective, many of the
observations described for the potentiostatic case (constant surface
concentration) are seen for the galvanostatic (constant surface flux)
case with some significant exceptions.

During insertion, the radial stress is tensile in the sphere. At any
given time, the tensile radial stress is the highest at the center and
decreases monotonically to zero at the surface. At any location, the
tensile radial stress increases with time and tends to a “steady-
state” (cf. Eq. (22)):

�r,t→∞ = 1
5

(1 − x2)

[
E˝

3(1 − �)

(
IR

FD

)]
. (25)

The maximum tensile stress at the center of the sphere is
�r,max = E˝IR/(15(1 − �)FD). This is in contrast to the potentiostatic
case where �r,max exhibits a transient behavior. The tangential
stress is compressive at the surface and tensile at the center of the
sphere. The tensile tangential stress at the center appears before the
solute reaches there. At the center, the tangential and radial stresses
always have the same magnitude so that the stress at the center is
purely hydrostatic in tension. At any location, the tangential stress
increases in magnitude with time and tends to a steady-state,

��,max = 1
5

(1 − 2x2)

[
E˝

3(1 − �)

(
IR

FD

)]
. (26)

The maximum tangential stress is tensile at the center and compres-
sive at the surface with the same magnitude as that of the maximum
radial stress at the center, |E˝IR/(15(1 − �)FD)|. The crossover from√

tensile to compressive tangential stress occurs at x = 1/ 2 after
the stress reaches the steady-state. Similar conclusions (i.e., replac-
ing tension by compression) hold for extraction. The shear stress
at the center of the sphere is zero. As was observed for the poten-
tiostatic condition, the shear stress increases towards the surface
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F d shear stress (d) for galvanostatic operation. The solution concentration increases with
t ctively) at the particle surface increase with time throughout the insertion process. By
c aracter of the stress evolution for potentiostatic and galvanostatic control.
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ig. 3. Concentration profile (a) and the corresponding radial (b), tangential (c), an
ime (a), and the magnitudes of the tangential and shear stresses (c and d, respe
omparing the analogous plots of Figs. 1 and 3, one can discern the very different ch

or all times. In addition, for all positions within the sphere, the
hear stress increases with time. The maximum shear stress, with
ts magnitude half of that of the maximum tangential stress, occurs
t surface after reaching the steady-state:

shear,max = 1
30

[
E˝

(1 − �)

(
IR

FD

)]
(27)

he total dimensionless elastic energy stored in the sphere, ˘ I, for
alvanostatic operation can be expressed as

ET (�)

2	R3E[˝IR/(3(1 − �)FD)]2

=
∫ 1

0

[
�I2

r (x, �)+2�I2

� (x, �)−2��I
�(x, �)(2�I

r(x, �) + �I
�(x, �))

]
x2 dx

I
≡ ˘ (�, �) (28)

q. (28) is shown in Fig. 4 for representative values of Pois-
on’s ratio for galvanostatically controlled charging. Similar to the
otentiostatic case, Poisson’s ratio affects the total stored energy
ignificantly. Unlike the potentiostatic case, however, the total
train energy increases monotonically to a steady-state consistent
ith the continuous increase in the stresses with time (Fig. 3b–d).

Fig. 4. Total strain energy vs. time for galvanostatic charging. While the strain energy
increases monotonically with decreasing Poisson ratios, as is observed in the poten-
tiostatic case (cf. Fig. 2), the evolution of the strain energy during galvanostatic
control is quite different from that of potentiostatic control.
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Fig. 5. A map showing the ratio of maximum stresses under potentiostatic and gal-
vanostatic control vs. a dimensionless parameter, (CR − C0)FD/(IR), which represents
the combined effects of materials properties (e.g., D), size (e.g., R), and charging con-
ditions (e.g., CR , C0, and I). Hence this map allows one to comprehend how changes
material or process parameters can be employed to stay below specified stress val-
ues. The constant 2 appearing in the label for the radial stress ratio can be replaced
by 1.93 if 3-digit accuracy is desired.
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.3. Implications for cell operation

There have been several recent studies optimized charging con-
itions [33–35]. Many of these studies focus on shortening the time
o achieve a high state of charge (e.g., Ref. [33]). There is, however,
ittle discussion on optimizing charging conditions to minimize

echanical stresses within the electrodes. The above analysis pro-
ides a guide to deciding between constant current and constant
otential charging methods. Specifically, we can compare the max-

mum stresses encountered during either purely potentiostatic or
alvanostatic conditions, subject to the assumptions used in the
ormulation the equations presented previously. The ratio of max-
mum radial stresses at the center is given by

�potentiostatic,max
r

�galvanostatic,max
r

≈ 2
CR − C0

IR/(FD)
(29)

hus, the maximum radial stress under potentiostatic condition
s greater than that under galvanostatic condition if the magni-
ude of current I is less than 2FD(CR − C0)/R and vice versa. Eq. (29)
orresponds to the maximum radial stress shown in Fig. 1b (near
= 0.0574, cf. Eq. (17)) divided by the maximum radial stress of
ig. 3b (obtained from the steady-state solution, E˝IR/(15(1 − �)FD)
er Eq. (25)). The constant 2 can be replaced by 1.93 if 3-digit accu-
acy is desired.

The ratios of maximum tangential stresses and shear stresses at
he surface are the same and are given by

�potentiostatic
�

�galvanostatic
�

= �potentiostatic
shear

�galvanostatic
shear

= 5
CR − C0

IR/(FD)
(30)

hus, the maximum tangential or shear stress under potentiostatic
ondition is greater than that under galvanostatic condition if the
agnitude of the current I is less than 5FD(CR − C0)/R and vice versa.

q. (30) corresponds to the maximum tangential and shear stresses
or a constant surface concentration (1 and 1/2, respectively, as can
e seen by substituting C0 for Cav(R) and CR for C(R) in Eq. (3) for
= 0), respectively, divided by the maximum tangential and shear
tresses of Fig. 3c and d, corresponding to E˝IR/(15(1 − �)FD) for the
angential stress and half this value for the shear stress, as described
elow Eq. (26).

In Fig. 5, we plot Eqs. (29) and (30) and show that
CR − C0)FD/(IR) uniquely determines the maximum stress ratios
or the radial, tangential, and shear stresses. The horizontal line
t �potentiostatic/�galvanostatic = 1 delineates the parameter range of
CR − C0)FD/(IR) such that �potentiostatic/�galvanostatic is greater than
r less than 1. Similarly, the ratio of maximum total strain energy
an be obtained using Eqs. (19) and (28). Hence, the maxima in
he curves depicted in Fig. 2 relative to those plotted of Fig. 4 (the
ong-time solution in the case of Fig. 4) yields the points depicted
n Fig. 6 for [(IR/FD)/(CR − C0)]2(Epotentiostatic,max

T /Egalvanostatic,max
T ).

his ratio of the maxima in total strain is seen to range from 4 to
.5 for admissible values of the Poisson ratio.

These results show that (CR − C0)FD/(IR) uniquely determines
hether potentiostatic or galvanostatic charging would gener-

te greater radial, tangential, and shear stress. It also determines
hich method generates greater total strain energy that can drive

racture in the spherical particle. This dimensionless parameter
CR − C0)FD/(IR), representing the combined effects of materials
roperties (e.g., D), size (e.g., R), and charging conditions (e.g., CR, C0
nd I), can therefore be used to guide the selection of charging con-
itions to minimize the maximum stresses and total strain energy

xperienced by an insertion electrode. We consider, for example,
n electrode made of a brittle ceramic material that fractures due
o tensile stresses. Eq. (29) can then be used to select a charging
ondition, either purely potentiostatic or galvanostatic, which gives
ise to a lower tensile stress. In contrast, since plastic deformation
Fig. 6. Ratio of maximum total strain energy as determined by Eqs. (19) and (28).
The dashed line is provided as a guide and does not represent calculations.

is usually the dominant failure mechanism for metallic alloy elec-
trodes, Eq. (30) can be used to select a charging condition resulting
in a lower shear stress. Thus, depending on the failure mode of
the electrode material, e.g., tensile fracture or shear induced plastic
deformation, an appropriate charging method may be selected, and
the best regime may consist of a combination of potentiostatic and
galvanostatic conditions.

3. Summary

We have developed analytic expressions for stress evolution in
a spherically shaped electrode element under either galvanostatic
or potentiostatic conditions. We show that stresses evolve quite
differently for the two conditions when solute diffusion resistance
dominates within host particles.
• For potentiostatic control, the magnitude of radial and tangen-
tial stresses at any location increases initially and then decreases
with time. The total strain energy, which drives particle fracture,
experiences a similar trend.
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For galvanostatic control, the magnitude of radial and tangential
stresses at any location increases and then reaches a steady-state
value that is independent of time. The total strain energy also
increases monotonically to a finite value.

The maximum stresses and total strain energy attained under
otentiostatic and galvanostatic conditions are compared and con-
rasted. This analysis suggests a possibility of developing new
attery charging strategies that minimize stresses and thus prolong
attery life.
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